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Abstract :  Semantic Image Generation refers to the task of generating photorealistic images conditioning on some input data. 

This task is carried out by a specific set of neural networks called Generative Adversarial Networks. These are a set of neural 

networks which work opposed to each other, evolving from each other’s successes.  

The generator is a convolution network that outputs some image, while the discriminator is a network that classifies said image. 

The job of the discriminator is to perfectly identify an image as fake or real, while the generator’s job is to try to produce realistic 

images.   

 Combining Convolutional Neural Networks with a technique called Spatially Adaptive Normalization (which is similar to Batch 

Normalization), the results of semantic image generation tend to be less washed out, owing to the semantic information being 

“retained” throughout the network.   

Stylistic transfer is added by using Variational Auto Encoders, which take as input an image and breaks it down into its latent 

space. The latent space is then used to transfer the input image’s style to the output of the semantic image generator. The results 

of our project have tended towards photorealism after about 50 epochs, with further training promising even better results. 

Transferring the learned networks to a mobile app, we will be able to allow users to create content of cities with minimal effort.   

 

 Keywords: Semantic Image Generation, Style Transfer, GANs. 

I. INTRODUCTION 

The conditional generative adversarial network, or cGAN for short, is a type of GAN that involves the conditional generation of 

images by a generator model.  

 Image generation can be conditional on a class label, if available, allowing the targeted generated of images of a given type. A 

specific form of conditional image synthesis is used, which is converting a semantic segmentation mask to a photorealistic image. 

This form has a wide range of applications such as content generation, image editing, interior designing, architectural designing etc. 

The model built to perform the task is a stacked Convolutional Neural Network, paired with Spatially Adaptive De-Normalization 

and Non-linearity layers (RELU specifically). Spatially Adaptive De-Normalization is a conditional normalization layer that 

modulates the activations using input semantic layouts through a spatially adaptive, learned transformation and can effectively 

propagate the semantic information throughout the network. This experiment was conducting by training the model in Google 

Colab over several weeks, using a backend with GPUs. Tensorflow is used to build the input pipeline, the model and its output. The 

dataset used for this task is the ‘COCO-Stuff’ dataset, available at http://cocodataset.org/   

II. PROBLEM STATEMENT 

To generate photo-realistic images from a basic solid colored drawing in a mobile platform. The images will belong to a set of 

objects dictated by the COCO-stuff dataset.   

The goal of the project is photo-realism to the naked human eye. To achieve this, Spatially Adaptive Normalization is combined 

with Generative Adversarial Networks. Previous methods include stacking convolutional, normalization, and non linearity layers. 

This is at best sub-optimal, because the normalization layers tend to “wash away” information in input semantic masks.   

 To tackle this, the model built to perform the task is a stacked Convolutional Neural Network, paired with Spatially Adaptive 

De-Normalization and Non-linearity layers (RELU specifically). By using these deep learning technologies, we propose a system 

that will be able to generate photo-realistic images to the user’s satisfaction.   

III. OBJECTIVES 

The aim of this project is multipurpose:   

•To study the new and hot topic in Deep Learning – Generative Adversarial Networks.    

•To study Spatially Adaptive Normalization and the effects it has on the outputs.   

•To study Variational Auto Encoders and how efficient it is in image style transfer.   

•To study how computationally effective the trained generator would be in an android app for semantic image generation.   

•To study how certain variations in implementations can affect the outcome of the model – using different generator 

architectures, using SPADE with different GAN architectures and comparing them to GAN architectures without SPADE, using 

different kernel sizes in convolutions etc. 
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IV. LITERATURE REVIEW 

The papers used in this project are named:  

[1] Taesung Park, Ming-Yu Liu,Ting-Chun Wang, Jun-Yan Zhu. Semantic Image Synthesis with Spatially-Adaptive 

Normalization arxiv 2019. arXiv preprint arXiv:1903.07291v1 [cs.CV] 18 Mar 2019.   

[2] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, Alexei A. Efros. Image-to-Image Translation with Conditional Adversarial 

Networks 2018. arXiv preprint  arXiv:1611.07004v3 [cs.CV] 26 Nov 2018 .  

[3] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, Bryan Catanzaro. High-Resolution Image Synthesis 

and Semantic Manipulation with Conditional GANs arxiv 2018. arXiv preprint : arXiv:1711.11585v2 [cs.CV] 20 Aug 2018.   

 

[1], published by Nvidia, describes a novel technique of normalization that produces photorealism better compared to any other 

method tried before. This normalization technique is called Spatially Adaptive deNormalization.   

It is similar to Batch Normalization – In SPADE, the input semantic information is convolved with two trainable parameters, beta 

and gamma. The activation at each layer is standardized using the mean and standard deviation of each channel, and then 

convolved with the beta and gamma parameters.   

This allows for the semantic information to be spread across the neural network, thus improving the “de-washing” capabilities of 

the networks.   

SPADE ensures that no information in the input is lost at any stage or layer of the neural network, thus enabling the generator to not 

only create far realer images, but also images that mimic the input semantic information to a higher degree.   

[2], published by UC Berkley, investigates conditional adversarial networks as a general-purpose solution to image-to-image 

translation problems. These networks not only learn the mapping from input image to output image, but also learn a loss function to 

train this mapping. This makes it possible to apply the same generic approach to problems that traditionally would require very 

different loss formulations.   

They demonstrate that this approach is effective at synthesizing photos from label maps, reconstructing objects from edge maps, 

and colorizing images, among other tasks. Indeed, since the release of the pix2pix software associated with this paper, a large 

number of internet users (many of them artists) have posted their own experiments with the system, further demonstrating its wide 

applicability and ease of adoption without the need for parameter tweaking. As a community, we no longer hand-engineer our 

mapping functions, and this work suggests we can achieve reasonable results without hand-engineering our loss functions either.   

[3], published by Nvidia and UC Berkley, details a new method for synthesizing high resolution photo-realistic images from 

semantic label maps using conditional generative adversarial networks (conditional GANs).   

Conditional GANs have enabled a variety of applications, but the results are often limited to low resolution and still far from 

realistic. In this work, they generate 2048 × 1024 visually appealing results with a novel adversarial loss, as well as new multi-scale 

generator and discriminator architectures.   

Furthermore, they extend a framework to interactive visual manipulation with two additional features. First, they incorporate object 

instance segmentation information, which enables object manipulations such as removing/adding objects and changing the object 

category.   

Second, they propose a method to generate diverse results given the same input, allowing users to edit the object appearance 

interactively. Human opinion studies demonstrate that our method significantly outperforms existing methods, advancing both the 

quality and the resolution of deep image synthesis and editing.   
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V.  PROPOSED SYSTEM 

Data Design for Generative Adversarial Network -   

 

 
 

 The generator is inputted with random noise that gets convolved and normalized using SPADE to produce a fake image. 

The original training set is concatenated with the fake image set and inputted to the Discriminator. The Discriminator then 

calculates the logprob of the image being Real or Fake.  

VI. ACQUIRING DATA 

Our first task was to obtain the dataset. The dataset that we have used to train the network is COCO Stuff provided at 

http://cocodataset.org/  

 VII. PREPROCESSING DATA 

The various techniques used to pre-process the images are as follows -   

•Resize – Resize the image to a size (height x width) as inputted by the user.   

•Scale Width – Scale the width of the image to a target width as inputted by the user.   

•Scale Short side – Find out the shorter dimension of the image and scale that to a target size inputted by the user.   

•Crop – Crop the image to capture the most important features. .   

•Flip – Flip the image i.e. use matrix transpose to flip left and right side of the image.   

 

These preprocessing techniques will allow the Deep Learning model to be more robust and not just generalize around the 

data. Not all the preprocessing techniques were used in this iteration of the project. Our goal is to test the model with all the 

techniques used.   

 IX. CREATING THE MODEL 

SPADE is the cornerstone of the project. Spatially Adaptive De-Normalization is a conditional normalization layer that 

modulates the activations using input semantic layouts through a spatially adaptive, learned transformation and can effectively 

propagate the semantic information throughout the network. Using TensorFlow, the gamma and beta parameterized convolutions 

were created. The functionality of SPADE comes from this formula – 

 
This can be visualized in the model as such -   

 

 

http://www.jetir.org/


© 2020 JETIR May 2020, Volume 7, Issue 5                                                                www.jetir.org (ISSN-2349-5162) 

JETIR2005230 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 635 
 

 
 

 X. IMPLEMENTING GENERATOR, ENCODER AND DISCRIMINATOR 

The discriminator model takes an example from the domain as input (real or generated) and predicts a binary class label of real 

or fake (generated). It runs on the normal binary crossentropy loss function and optimizes itself using ADAM . 

 
  

The generator model takes a fixed-length random vector as input and generates a sample in the domain. The generator is 

constructed using SPADE, stacked convolutions as well as skip connections to allow us to deploy a deep neural network.   

 
 

 

The image encoder is a Variational Auto Encoder used to transfer an images style to another image. This is basically a stacked 

layer of convolutions which embeds the input image to a latent space characterized by its standard deviation and mean; used to 

create images of the same latent variables.   
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 XI. PIPELINES WORKFLOW 

 
 

The Discriminator is pre-trained on the original input distribution. The generator is inputted with a random noise vector. The 

generator convolves the input and uses the SPADE Resblock to learn the modulation parameters from the activation of that layer. 

The Image encoder plays a key role in making the neural network perceive the input images. The Discriminator is trained on cross 

entropy classification loss The generator is trained to mimic the input distribution, fooling the discriminator. The image encoder 

takes as input an image, embeds it into a latent space, and that latent space is used to transfer its style to the output image of the 

generator. The result is a stylized image generated from the users input segmentation mask.   

 

 

http://www.jetir.org/


© 2020 JETIR May 2020, Volume 7, Issue 5                                                                www.jetir.org (ISSN-2349-5162) 

JETIR2005230 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 637 
 

 
 

XII. TRAINING CONFIGURATION 

Criteria Original Paper Our Implementation 

 Num Filters in SPADE 128 128 

COCO Image Size 512x256 256x256 

Batch Size 20x8 GPU 1 GPU 

No.Upsampling layers in generator 7 4 

No.Epochs 200 68 

Filters in Discriminator More Half Of Original 

GPU Used NVIDIA V100 Tesla T4 

Table 1: Training Configuration Parameters 

 XIII. TRAINING EPOCHS 

The model was trained using Google Colab’s GPU Environment. An epoch took about 5000 seconds to complete, and 

hence we were limited to training the model for only 68 epochs. Each training step took about 1.5 seconds, and each epoch was 

limited to 5000 iterations.   

Below is a graphic depicting iterations within epoch 3, depicting the losses calculated after each iteration and the time 

taken to complete an iteration.   
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 XIII. TENSORBOARD VISUALIZATIONS 

We have used Tensorboard to visualize the various losses calculated with reference to the model’s performance.   

•D(x) is the critic’s output for a real instance.   

•G(z) is the generator’s output when given noise z.   

•D(G(z)) is the critic’s output for a fake instance.   

•The output of critic D does not have to be between 1 and 0.  

 

The discriminator loss is calculated as follows:   

D(x) - D(G(z))     (1)  

The discriminator tries to maximize this function. In other words, it tries to maximize the difference between its output 

on real instances and its output on fake instances.  

The discriminator loss is shown below.   
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The Generator Adversarial Loss is shown below. 

 
 

The Generator Feature Loss is shown below. 

 
 

The Kullback–Leibler divergence is the directed divergence between two distributions. It is calculated as 

follows:  

DKL(P||Q) = Σ P(x)log(P(x)/Q(x))     (2) 

The Generator KLD Loss is shown below.   

 

 

 

 

 

 

The Generator VGG Loss is the Perceptual Loss that measures the perceptual differences in content and style between 

images. 

W = argminW Ex,y[Σ λiLossi(fW(x),yi)]     (3) 
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The Generator VGG Loss is shown below. 

 

The Generator Loss is calculated as :   

D(G(z))     (4)  

The generator tries to maximize this function. In other words, It tries to maximize the discriminator’s output for its fake 

instances.  

The Generator Loss is shown below.   

 

 

  XV. HARDWARE REQUIREMENT 

The training part of the project was performed in Google Colab. A python 3.0 Backend GPU was deployed from the google 

cloud, with 13 GB of RAM and 350 GB of disk space. The RAM was used to hold the preprocessed images to be delivered to the 

networks for training. The disk space was used to contain the entire dataset, the python and tensorflow code and the Deep Learning 

Models.   

The application part of the project was carried out using Android Studio. The Deep Learning Models were converted to TFlite 

and deployed in the Android App. As such, to hold the TFlite model as well as the app, a minimum Disk Space of 1Gb will be 

required, 2 GB RAM is recommended for smooth workflow, and a 2 Ghz Snapdragon/Apple processor is required to run the Deep 

Learning Model.   

 

 XVI. SOFTWARE REQUIREMENT 

Python 3.0 and Tensorflow are the dependencies required to train the Deep Learning Models on Google Colab. No Software 

dependency is required to run the application on the users end. All training, testing and conversions have been done on the google 

cloud. A user simply has to download the app on the Play Store to utilize it. 

 XVII. RESULTS AND CONCLUSIONS 

After training the model for a few months, we reached an epoch level of 68. The results of our training have been fruitful in 

producing nearly photorealistic images. The training process is shown below – 
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As shown above, the GAN loss, VGG Loss and the Discriminators probabilities of fake and real images have been recorded. It 

is observed that the Discriminator is almost perfect in the start of the training, owing to the generator not being able to mimic the 

input distribution. But, with time, the Generator performs better and better, eventually fooling the discriminator into believing the 

input image belongs to the original distribution.   

Our project has demonstrated that this new field of Deep Learning – Generative Adversarial Networks are very efficient at 

mimicking data distributions. This will be very important in the near future, where we will be able to mimic data for the use of DL, 

AI, ML and Big Data Application. 

Our project dealt entirely with image data. The results observed were photorealistic and non- blurry. This itself is an indication 

of how effective Generative Adversarial Networks are in conditional image synthesis. The utilization of Spatially Adaptive de-

Normalization affected the results in a profound way. It was observed that without SPADE, photorealism would not have been 

possible.   

We therefore conclude that, SPADE in tandem with GANs were effective, efficient, but also computationally heavy in the 

synthesis of photorealistic images.  

The entire Android App can be found on the github page linked : https://github.com/jeromenicholas07/sketchola_flask 
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